

India- Japan Environment Week 12-13 January 2023

"Hydrogen for Decarbonization of Iron &

Steel Sector & Green Pathways"

Dr Mukesh Kumar Senior Advisor-JSP Group Advisory Services

Need for Decarbonization of Steel Sector

- Steel making is carbon intensive and considered as "Hard to Abate" Sector
- Steel Industry is generating around 1.85 t CO2 / tcs contributing to around 7-9% in the overall global emissions. Average Carbon emission in India is around 2.5% t CO2/Tcs –nearly 10-12% of total emissions.
- India's per capita consumption of steel @ 78Kg is one of the lowest against global average of 228 Kg. Being a developing country, steel demand set to increase.
- Indian Steel production capacity likely to increase to 300 million TPY from existing capacity of 155 million TPY by 2030 and to around 500 million TPY by 2047.
- Presently limited opportunities are available for alternate steel making, although efforts are being made to develop disruptive technologies based on Hydrogen, Electrolysis viz Molten Oxide Electrolysis, Oxygen Decoupled Electrolysis etc
- To limit global warming to a maximum of 2 °C above pre-industrial levels—the goal of the 2015 Paris climate agreement—the steel industry's annual emissions must fall to about 500 million t of CO₂ by 2050 i.e 0.2 T CO₂ / Tcs from present level of 1.85T/Tcs

GHG Emissions- Steel Sector

Scope 1: Direct GHG Emissions

GHG emissions from sources that are owned or controlled by a particular production entity e.g emissions from Coke Ovens, Sinter Plant, BF, BOF etc. in an integrated steel plant.

Scope 2: Indirect GHG Emissions

GHG emissions occur at the facility outside the unit e.g. from the generation of imported energy, defined as electricity and / or heat that is purchased and brought into the organizational boundary of the company

Scope 3: Other Indirect GHG Emissions

GHG emissions as a consequence of the activities of the company, but occur from sources not owned or controlled by the company, e.g. manufacture of steel products, transportation

Focus need to be on adoption of Low Carbon Emission Steel making road map to achieve carbon Neutrality by 2070 based on Scope-1 & 2 emissions

Possible Green Pathways

1. Improvement in Existing Technologies (CO₂ Reduction Potential: 25-30%)

Focus on raw material quality through beneficiation & pelletization, energy efficiency through waste heat recoveries & use of natural /syngas, productivity improvement, process reliability through digitalization, waste management and adoption of best available technologies (BAT), Hydrogen Injection (upto 70%) in Gas based DRI & Blast Furnaces, Use of Plastic Waste & CCU

2. Maximize Scrap based Production (CO₂ Reduction Potential: 10-20%)

Maximizing use of Scrap in EAF, IF and BOF. Although, it has high potential to reduce CO_2 emissions but limited availability of Scrap may result in limited reduction of emissions. Use of renewable power in EAF, IF and Integrated steel plants and minimizing Coal based power

3. Breakthrough Technologies (CO₂ Reduction Potential : Carbon Neutrality)

Green Hydrogen based steel making, Carbon Capture Utilization & Storage (CCUS), Molten Oxide Electrolysis (MOE) / ODE using renewable power,

Decarbonisation Pillars for Steel Business

CO₂ Minimization

CO₂

 ★

 Avoidance

Carbon Circularity

- Syngas based production
- Resource optimisation
- Pallet feed in blast furnaces
- Zero waste approach

- Scrap based production CC
- Heat recovery from off gases
- Heat recovery from slags
- Use of renewable power
- Enhancing hydrogen usages / Hydrogen based steel

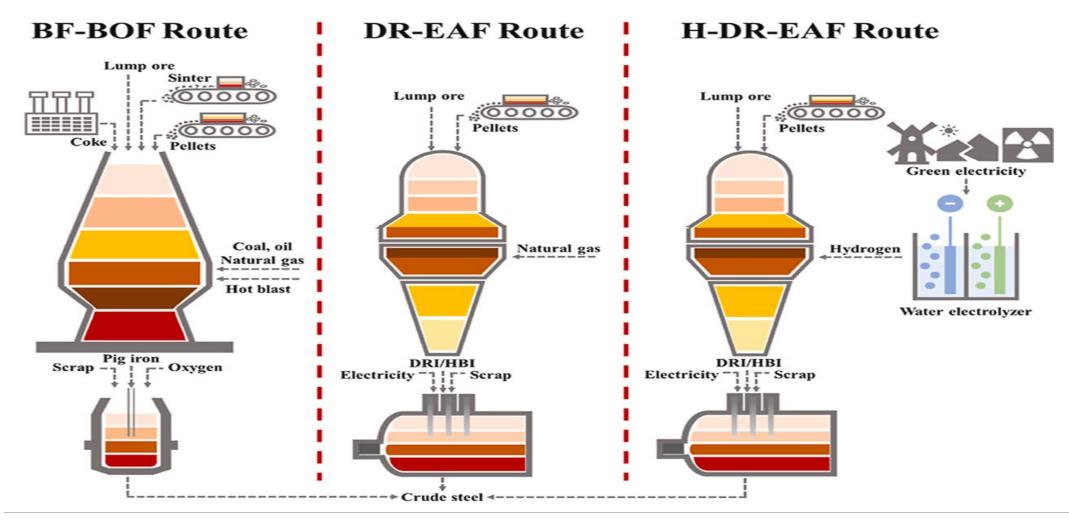
- CO₂ to CO
- CO₂ to syngas
- Dry reforming of CO_2
- Fuels bioethanol

(C)

ဌာ

· Chemicals - methanol

Carbon Capture


& Utilization

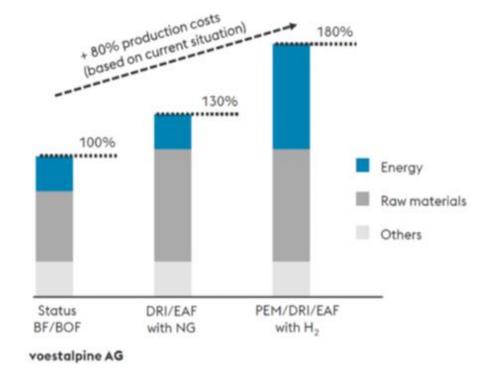
 Biological – crude algae oil (biodiesel/ SAF)

5

Hydrogen Based Steel Making Vs Conventional Steel making

Carbon

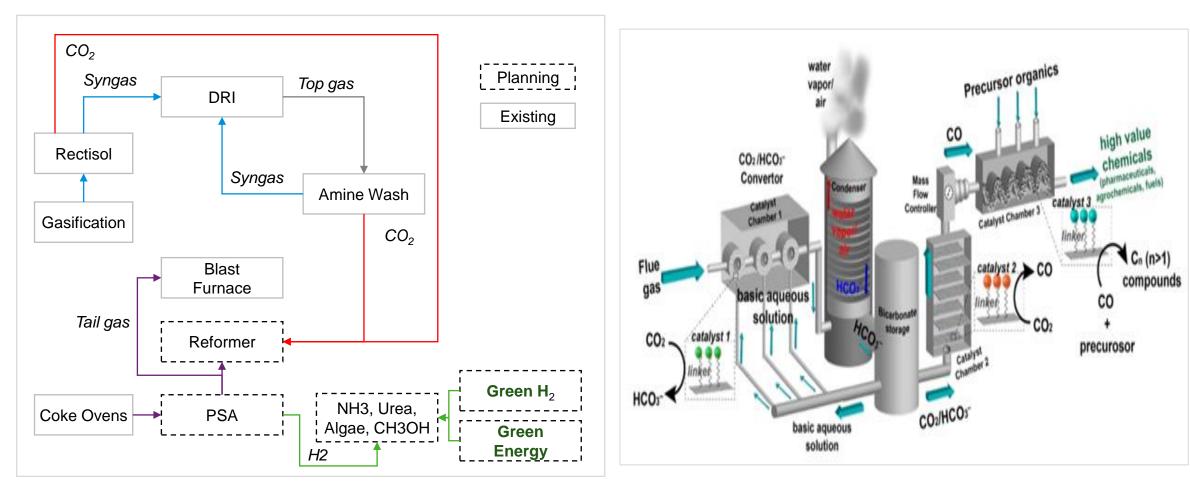
Avoidance


()

HYDROGEN AND STEEL MAKING-FACTS

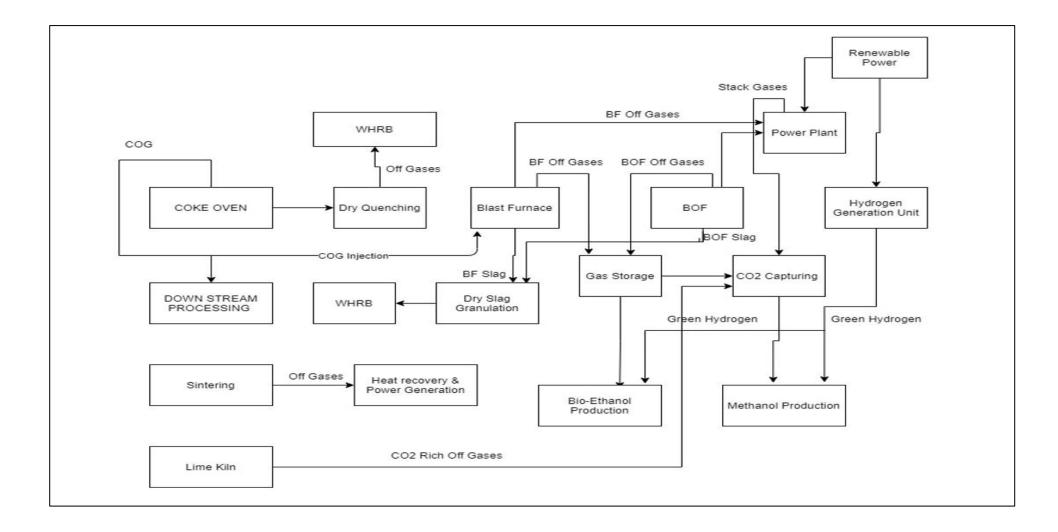
- □ Hydrogen based reduction is endothermic reaction. Requires external source of heat/ energy to carry out reaction
- Direct production of hot metal/ steel not feasible, shall require EAF to produce steel
- □ Theoretically 54 Kg and practically around 70-80 Kg of Hydrogen is required to produce each tons of steel. Large capacity H₂ generator is a challenge.
- □ Technically feasible to produce steel from non-carbon energy sources (H_2), but it is an expensive option. 50-55 KWh of energy required per Kg of Hydrogen
- □ Surging carbon dioxide prices and decreasing hydrogen prices are crucial to ensuring the economic viability (according to cash cost) of pure hydrogen-based steel production

TECHNO-ECONOMIC CONSTRAINTS


- □ High Investment made in efficient integrated steel plant ; loss of value due to transition to Hydrogen
- Large Capex and Opex required for transition; Government support may be a necessity
- Hydrogen Based DRI / Steel making : lack of commercially proven technology and not yet competitive, globally difficult to compete
- Competitive energy prices and reduced cost of Hydrogen is essential

Steel is a globally traded commodity, and with over half the world's production coming out of China, competitive pricing is non-negotiable

Carbon circularity in Syn Gas & BF-JSP



Carbon Recycling & Re-use

Triple Module CO₂ treatment system for Carbon Circularity

Road Map for CCUS and Heat Recoveries in BF-BOF

Energy Saving Technologies (BAT)

Energy Saving Technologies	Energy Flow	Applications	Energy Saving Potential
Top Pressure Recovery Turbine(TRT)	BF Gas	BFG Pressure reduction	Electricity generation @30Kwh/thm
BFG dry dedusting &heat recovery	BF Gas	BF Gas Scrubbing	Increase of 30% in TRT power generation and increase of lower heating value (LHV) by 5-8%
LD Gas dry-dedusting &recovery	LD gas	LD Gas scrubbing	Increased Steam Generation and lower heating value by appx 5%
High Temperature Air Combustion	BFG, LDG, COG	Reheating Furnace and hot blast stoves	20-30% increase in thermal efficiency
Coke Dry Quenching	Coke	Coke quenching	Electricity generation@95-105Kwh/T(Coke)
Pulverized Coal Injection	Coal	Blast Furnaces	Reduction of 10Kg/thm of Coke for appx 15Kg/thm of PCI
Use of VFD and energy Management system	Electricity	Entire Plant	Upto 10-15% reduction in energy consumption
Dry reforming of Methane of COG	COG	Coke Oven	Methane in COG to be converted into Syn gas and used in BF. Saving of PCI & Coke.

Promoting Efficiency in BF-BOF

Parameters	Present Consumption	Target-2047	Likely Technology Intervention
Specific Energy, Gcal/tcs	5.6-6.7	<5	Iron Ore Grade Improvement, Pellets feed TRT,CDQ, Waste Heat Recovery, COG/NG injection, Renewable Power, Dry Slag Granulation (DSG), Organic binders
Specific Water Consumption, M ³ /tfs	3.3-4.5	<2.5	Dry Disposal of Tailings, CDQ, DSG, Dry Dedusting of BOF and LD gas, COC improvement,
GHG Emission, T of CO ₂ /tcs	2.3-2.8	<1.5	CCU, Heat Recoveries and Power Generation, CDQ, 60-70% pellets feed, Maximizing Scrap in BOF, NG/Hydrogen/ COG injection, Increasing PCI, Hot blast temperature
Coke Rate, Kg/Thm	350-450	275-300	Pellets Feed, Iron Ore grade improvement, Micro pelletization for waste dust/sludge, NG/COG/Plastic/Oil injection,
Pulverized Coal Injection, PCI, Kg/thm	75-180	>200	Pellets feed, Iron Ore Grade Improvement, Sinter quality,

Promoting Efficiency in BF-BOF

Parameters	Present Consumption	Target-2047	Likely Technology Intervention
Blast Furnace Productivity, T/M ³ /day	1.6-2.5	3-3.5	Iron Ore Grade Improvement, Pellets feed, Coal & Coke quality, Sintering quality
Slag Rate, Kg/thm	350-450	<300	Iron Ore Grade Improvement, Pellets feed, Coal & Coke quality, Sintering quality
Effluent Discharge		Zero Discharge	CDQ, DSG, Dry Dedusting of BOF and LD gas, Nano Technology for Cyanide treatment Advanced waste water treatment
Dust Emission	MOEF&CC norms	MoEF&CC norms	Dry Filters, ESP, Vacuum Extraction system
Solid Waste Utilization, %	60-80	Zero Waste	Micro pellets, Composite pellets, briquetting, Integrated Slag management for use in Cement, Road and Fertilizers
Employee Productivity, Tonnes of steel/per man/year	400-800	>1500	Digitalization, Supervisory Process Control, (Industry 4.0)

De-carbonization strategy may influence future growth of the steel Industry. Hydrogen can be an option but requires large R&D to address technological challenges and minimize cost of production

